3.6: Fundamental Solution Set

Consider the following IVP:

$$
\begin{align*}
& p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=0 \tag{1}\\
& y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{align*}
$$

Suppose that y_{1}, y_{2} are two solutions to (1). Then, by the principle of

Superposition,

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

is also a solution to (1).
Note that $y^{\prime}(t)=c_{1} y_{1}^{\prime}(t)+c_{2} y_{2}^{\prime}(t)$
Using initial conditions in (1):

$$
\begin{aligned}
& y_{0}=y\left(t_{0}\right)=C_{1} y_{1}\left(t_{0}\right)+C_{2} y_{2}\left(t_{0}\right) \\
& y_{0}^{\prime}=y^{\prime}\left(t_{0}\right)=C_{1} y_{1}^{\prime}\left(t_{0}\right)+C_{2} y_{2}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

We will first solve C_{2} in terms of C_{1} in (2.1) (skip Cramer's rule and matrix algebra), then we will substitute C_{2} solved from (2.1) into (2.2) to solve C_{1} in terms of known quantities. Finally, we will use either (2.1) oz (2.2) to solve C_{2}.

Step 1: From (2.1):

$$
\begin{equation*}
C_{2}=\frac{y_{0}-C_{1} y_{1}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)} \tag{*}
\end{equation*}
$$

Step 2: Substitute (*) un to (2.2):

$$
\begin{aligned}
& y_{0}^{\prime}=C_{1} y_{1}^{\prime}\left(t_{0}\right)+\frac{y_{0}-c_{1} y_{1}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)} y_{2}^{\prime}\left(t_{0}\right) \\
& =c_{1} y_{1}^{\prime}\left(t_{0}\right)-c_{1} \frac{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}+\frac{y_{0} \cdot y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =C_{1}\left[y_{1}^{\prime}\left(t_{0}\right)-\frac{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}\right]+\frac{y_{0} \cdot y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)} \\
& =C_{1} \frac{y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}+\frac{y_{0} \cdot y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)} \\
& \Rightarrow y_{0}^{\prime}-\frac{y_{0} \cdot y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}=C_{1} \frac{y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)} \\
& \Rightarrow \frac{y_{0}^{\prime} y_{2}\left(t_{0}\right)-y_{0} y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}=C_{1} \frac{y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)}{y_{2}\left(t_{0}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y_{0}^{\prime} y_{2}\left(t_{0}\right)-y_{0} y_{2}^{\prime}\left(t_{0}\right)=C_{1}\left(y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)\right) \\
& \Rightarrow C_{1}=\frac{y_{0}^{\prime} y_{2}\left(t_{0}\right)-y_{0} y_{2}^{\prime}\left(t_{0}\right)}{y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)-y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)} \\
& =\frac{y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{0}^{\prime} y_{2}\left(t_{0}\right)}{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)} \\
& =\frac{\left|\begin{array}{ll}
y_{0} & y_{2}\left(t_{0}\right) \\
y_{0}^{\prime} & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|}{\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|} \quad \text { (Cramer's rule was correct!) }
\end{aligned}
$$

Note: $\left|\begin{array}{ll}y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\ y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)\end{array}\right|=W\left(y_{1}(t), y_{2}(t)\right)\left(t_{0}\right)$ (Wronskian of y_{1}, y_{2})

From above it is clear why we need the Wronskian to be nonzero.

Substituting (3.1) into $(2,1)$:

$$
\begin{aligned}
& y_{0}=\frac{y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{0}^{\prime} y_{2}\left(t_{0}\right)}{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)} y_{1}\left(t_{0}\right)+C_{2} y_{2}\left(t_{0}\right) \\
& \Rightarrow C_{2} y_{2}\left(t_{0}\right)=y_{0}-\frac{\left(y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{0}^{\prime} y_{2}\left(t_{0}\right)\right) y_{y_{1}\left(t_{0}\right)}^{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)}}{\Rightarrow C_{2} y_{2}\left(t_{0}\right)} \\
& =\frac{y_{0}\left(y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)\right)-\left(y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{0}^{\prime} y_{2}\left(t_{0}\right)\right) y_{1}\left(t_{0}\right)}{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)} \\
& C_{2}=\frac{y_{0} y_{1}\left(t t _ { 0 } \left(y_{2}^{\prime}\left(t_{0}\right)-y_{0} y_{1}^{\prime}\left(t_{0}\right) y_{2}(t)-y_{0} y_{2}^{\prime}\left(t_{0} y_{2}\left(t_{0}\right)+y_{0}^{\prime} y_{2}\left(t_{0}\right) y_{1}\left(t_{0}\right)\right.\right.\right.}{y_{2}\left(t_{0}\right)\left(y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{y_{0}^{\prime} y_{1}\left(t_{0}\right)-y_{0} y_{1}^{\prime}\left(t_{0}\right)}{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)} \\
& =\frac{\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{0} \\
y_{1}^{\prime}\left(t_{0}\right) & y_{0}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right| \quad \text { (Cramer's rule works }} \text { again!) }
\end{aligned}
$$

It might be beneficial for you to do the algebraic calculation above (for general case) once, then keep the results of Cnamer's rule in mind for simplicity)

